Турбокомпрессор, что это?

Ссылка на ролик: http://youtu.be/SG9nXYJXakg

Как работает механизм VGT (VNT) - изменяемая геометрия лопаток в горячей части турбокомпрессора:

 

Откуда берется мощность в двигателях внутреннего сгорания? От горения топливовоздушной смеси с последующим расширением объема и повышением давления, которое и толкает поршень вниз при рабочем такте. Чем больше топливовоздушной смеси сгорит – тем большее давление будет действовать на поршень, соответственно увеличится крутящий момент и мощность. Но как за единицу времени (пока открыты впускные клапаны) загнать в цилиндры больше воздуха? Ответ прост – под давлением!

Турбина или компрессор как раз и обеспечивают подачу воздуха во впускной коллектор двигателя под определенным давлением. Далее следует добавить туда больше топлива (изменением длительности открытия форсунок) – и вот уже в цилиндре содержится больше топливовоздушной смеси. Благодаря принудительному наполнению цилиндров, мощность двигателя легко можно поднять на 100%! Пример – 265-300-сильные моторы Audi S3, Mitsubishi Lancer Evolution, Subaru Impreza WRX STI, когда их обычные атмосферные собратья объемом 2-2,5л выдают около 130-170 сил.

В чем же разница между турбонаддувом («турбиной») и механическим наддувом («компрессором»)? Турбина представляет собой два вентилятора, соединенные между собой валом. На один из них (турбинное колесо) дуют выхлопные газы и заставляют его вращаться. Это вращение по валу передается другому вентилятору (насосное колесо), который уже втягивает воздух и направляет его во впускной коллектор двигателя. Компрессор устроен несколько иначе: у него есть насосная часть (в разном виде – вентилятор как в турбине, шнеки, похожие на сверло, или др.), но вместо турбинного колеса установлен механический привод от двигателя (в виде ремня или шестеренок).

В зависимости от давления наддува и прибавки в мощности по отношению к атмосферному аналогу, все турбины разделяют на несколько классов: низкого давления (до 0,6 бар, до +30% мощности), среднего давления (до 1,2 бара, до +50-60% мощности), и высокого давления (до 2-2,5 бара, + 80-100% мощности). Есть турбины и с более высоким давлением, но они используются только в спорте или в «жестком» тюнинге. Хотя способны обеспечить прибавку +200-300%! Компрессор обычно работает с давлением до 0,6-0,8 бар и дает прибавку в мощности +30-50%.

Но, к сожалению, механический компрессор – это уже динозавр в современном моторостроении. Его главное преимущество – линейность в отзывах и подаче воздуха из-за жесткой связи с коленвалом мотора. Но это и его главная проблема – больше потери двигателя на вращение компрессора. Последней компрессоры массово использовала фирма Mercedes в своих V-образных восьмерках для AMG – в крупных моторах потери мощности на компрессор порой достигали нескольких десятков «лошадей»!

Турбина лишена этого недостатка, ведь ее вращают выхлопные газы, поэтому лошадиные силы берутся в буквальном смысле «из воздуха и бесплатно»! Однако здесь зарыт основной недостаток турбины – инерционность срабатывания, или просто «турбояма». Для большей мощности необходимо больше воздуха, а его можно получить, только раскрутив турбину посильнее, для чего требуется достаточный напор выхлопных газов. Время, необходимое для «раскрутки» турбины, напрямую зависит от размеров и веса ее турбинного и насосного колес. Вспомните маховик: больше вес – сложнее раскрутить, но больше стабильность, а легкость означает быструю реакцию, но с небольшой отдачей. Между этими крайностями и разрываются конструкторы турбомоторов: либо маленькая турбина с быстрым откликом, но небольшой эффективностью, либо крупная турбина с большой прибавкой, но и с большими запаздываниями при работе. Однако для высоких оборотов маленькая турбина – что спрей от огня против большого пожара: давление высокое, а вот количество подаваемого воздуха мало. В таком случае надо использовать «пожарный гидрант» – пусть давление воздуха невысоко, но его количество достаточно.

Желание решить вышеперечисленные проблемы и привело к появлению системы «Twin Turbo»: выпускной коллектор мотора имеет два выходных отверстия для двух турбины разных по величине, а между ними – клапан управления потоком выхлопных газов. При небольших оборотах клапан направляет выхлоп на маленькую турбину, которая быстро раскручивается, и качает воздух, чуть ли не с холостых оборотов. А когда требуется больше мощности – нажмите педаль посильнее, клапан направит поток выхлопных газов на большую турбину, которая и обеспечит стабильную работу до самой отсечки. Такую конструкцию в 90-х использовал Nissan в модели Skyline GT-R на моторе RB26DETT, в 2000-х она применялась в Opel Vectra V6 OPC (там две турбины в некоторых режимах могли даже работать вместе). По схожему пути пошел и VW с мотором 1.4 TSI Twincharge, вот только вместо маленькой турбины был использован механический компрессор. Сегодня схожую конструкцию, но с тремя турбинами, использует BMW.

Шильдик Bi-Turbo подразумевает тоже две турбины, но отличие состоит в том, что эти турбины одинаковы по размеру и выхлопной коллектор мотора разделен на две независимые части. Эта конструкция используется в основном на моторах с большим объемом – ведь надо что бы они и тянули с «низов» (требуется маленькая турбина), но и не скисали на верхах (требуется большая турбина). Если же мы разделили мотор, то каждой турбине теперь надо обслуживать только свою часть, с объемом в 2 раза меньшим от общего. Примеры – Audi V6 2.7 Bi-Turbo, BMW (335) 3.0 Bi-Turbo – в их случае каждой турбине отводилось уже не 6 цилиндров, а всего 3 с рабочим объемом в 1,3-1,5 литра. По аналогичному принципу построен также мотор Mercedes V12 Bi-Turbo (на одну турбину 6 цилиндров) и двигатель Bugatti W16 (16 цилиндров, 4 турбины).

Почему не использовать Twin Turbo? Ответ стандартен – цена и простота. Система Bi-Turbo проще (нет управляющего клапана между турбинами), и более надежна. К тому же симметричные коллектора и турбины легче разместить в развале V-образного блока цилиндров. Однако Bi-Turbo не обладает той шириной спектра применения, который может обеспечить система Twin Turbo.